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Abstract
Objective  We performed a systematic review, meta-
analysis and meta-regression to determine if dietary 
protein supplementation augments resistance exercise 
training (RET)-induced gains in muscle mass and 
strength.
Data sources  A systematic search of Medline, Embase, 
CINAHL and SportDiscus.
Eligibility criteria  Only randomised controlled trials 
with RET ≥6 weeks in duration and dietary protein 
supplementation.
Design  Random-effects meta-analyses and meta-
regressions with four a priori determined covariates. Two-
phase break point analysis was used to determine the 
relationship between total protein intake and changes in 
fat-free mass (FFM).
Results  Data from 49 studies with 1863 participants 
showed that dietary protein supplementation 
significantly (all p<0.05) increased changes (means 
(95% CI)) in: strength—one-repetition-maximum 
(2.49 kg (0.64, 4.33)), FFM (0.30 kg (0.09, 0.52)) and 
muscle size—muscle fibre cross-sectional area (CSA; 
310 µm2 (51, 570)) and mid-femur CSA (7.2 mm2 (0.20, 
14.30)) during periods of prolonged RET. The impact of 
protein supplementation on gains in FFM was reduced 
with increasing age (−0.01 kg (−0.02,–0.00), p=0.002) 
and was more effective in resistance-trained individuals 
(0.75 kg (0.09, 1.40), p=0.03). Protein supplementation 
beyond total protein intakes of 1.62 g/kg/day resulted in 
no further RET-induced gains in FFM.
Summary/conclusion  Dietary protein supplementation 
significantly enhanced changes in muscle strength and 
size during prolonged RET in healthy adults. Increasing 
age reduces and training experience increases the 
efficacy of protein supplementation during RET. With 
protein supplementation, protein intakes at amounts 
greater than ~1.6 g/kg/day do not further contribute 
RET-induced gains in FFM.

Introduction
Resistance exercise training (RET) in combination 
with dietary protein supplementation is a common 
practice, in athletes and recreational exercisers 
alike, with the aim of  enhancing RET-induced 
gains in muscle mass and strength. Recognised as a 
potent antisarcopenic stimulus, protein supplemen-
tation has also been advocated for ageing persons 

participating in RET. Despite a large volume of 
work in this area, narrative reviews1–5 and even 
meta-analyses6–12 yield conflicting results as to the 
actual effectiveness of protein supplementation to 
enhance RET-mediated gains in muscle mass and 
strength. This lack of agreement on the efficacy of 
protein supplementation6–12 is likely due to the use 
of divergent study inclusion criteria and inclusion 
of subjects with differing: ages, training statuses, 
total protein intakes, protein sources and protein 
doses. Thus, an evidence-based answer to the main 
question of the efficacy of protein supplementa-
tion, while previously reported,7 now appears to be 
controversial.4

We conducted a meta-analysis that was more 
inclusive in nature than previous meta-analyses6–12 
to provide a broad, systematic and evidence-based 
assessment on whether protein supplementation 
can augment changes in relevant RET outcomes. 
We used meta-regression to evaluate the impact 
of important potentially mediating covariates that 
were decided a priori to the meta-analysis. The 
present meta-analysis includes more than double 
the number of studies and participants than the 
largest published comprehensive meta-analysis on 
protein supplementation during RET to date.7ST1

We also undertook an additional rational, mech-
anism-based analysis that had the aim of answering 
the following question: is there a protein intake 
beyond which protein supplementation ceases to 
provide a measurable benefit in increasing muscle 
mass during RET? To answer this question, we 
recognised that the process of muscle protein 
synthesis (MPS), as the primary determinant of 
muscle hypertrophy,13 shows a saturable dose-re-
sponse relationship with increasing protein intake.14 
Since measures of MPS show good agreement with 
hypertrophy13 we theorised that the effect of daily 
protein intake on RET-induced changes in muscle 
mass would show a dose-responsive relationship 
but that this would ultimately plateau.

Methods
Inclusion criteria
Any randomised controlled trials (RCTs) that 
combined a RET and protein supplement interven-
tion were considered for this meta-analysis. Trials 
had to be at least six weeks in duration, participants 
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had to be performing RET at least twice per week, and at least 
one group had to be given a protein supplement that was not 
co-ingested with other potentially hypertrophic agents (eg, 
creatine, β-HMB, or testosterone-enhancing compounds). Only 
trials with humans who were healthy and not energy-restricted 
were accepted. Manuscripts had to be original research (not a 
review or conference abstract) and be written in English.

Search strategy
A systematic search of the literature was conducted (LB) in 
Medline, Embase, CINAHL and SportDiscus, current to January 
2017 (see  online  supplementary appendix 1). As appropriate, 
a combination of keywords and subject headings was used for 
the following concepts: protein supplementation and resistance 
training or muscle strength. The original search yielded 3056 
studies. Any overlooked trials were identified by consulting 
other reviews and meta-analyses on the subject and were added 
in manually (17 studies). After deduplication and screening 
for inclusion criteria, 155 articles were independently read/

reviewed by three authors (RWM, KTM and SRM). A total of 49 
RCTs were selected for inclusion in this meta-analysis (figure 1).

Data extraction
Predetermined relevant variables from each included study 
were gathered independently by three investigators (RWM, 
KTM and SRM). Relevant variables included those regarding 
the study design, details of the RET intervention, partici-
pant characteristics, protein supplement information, placebo/
control information, performance outcomes, body composi-
tion outcomes and any other notable information (eg, sources 
of bias/conflict of interest). Where data were not presented 
in table or text and authors could not be reached, data were 
extracted using WebPlotDigitizer (Web Plot Digitizer, V.3.11. 
Texas, USA: Ankit Rohatgi, 2017) or calculated from base-
line values and/or percentage change. Where there were any 
discrepancies between the three reviewers the manuscripts were 
revisited by all reviewers (RWM, KTM and SRM) and agreed 
on by discussion. We also conducted a post hoc reassessment 

Figure 1  PRISMA flow chart.
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of 10 randomly  selected studies and compared the extracted 
results.15 Coder drift was <10% in all cases for each investigator 
and inter-rater (RWM, KTM and SRM) reliability was excellent 
(>95%).

A total of 58 different body composition and 66 perfor-
mance outcomes were extracted from the final 49 studies.16–64 
Primary outcomes were limited and amalgamated to include two 
different performance outcomes and four different body compo-
sition outcomes based on those most commonly reported in the 
49 RCTs. Performance outcomes were: one-repetition-max-
imum strength (1RM; measured by any 1RM strength test) and 
maximum voluntary contraction (MVC; measured by both isoki-
netic and/or isometric contractions using a dynamometer with 
any muscle group/action). Body anthropometric and composi-
tion outcomes included: total body mass (TBM; measured by 
any scale); fat-free mass (FFM) and bone-free mass (or lean mass 
if FFM was not available; FFM; measured by dual-energy X-ray 
absorptiometry (DXA), hydrodensitometry,   or whole-body air 
plethysmography  (BodPod)); fat mass (FM; measured by DXA, 
hydrodensitometry and/or BodPod); muscle fibre cross-sec-
tional area (CSA; measured in any fibre subtype (I, IIa, and/or 
IIx) obtained from either vastus lateralis and/or latissimus dorsi 
biopsies using microscopy); and mid-femur whole muscle CSA 
(mid-femur CSA, measured by MRI and/or CT).

Data syntheses
When data were reported in different units (eg, pounds vs kilo-
grams) the data were converted to metric units. In all analyses 
the comparator group received an identical RET intervention 
but was non-supplemented or placebo-supplemented. If a study 
included a protein-supplemented group, a non-supplemented 
control group and a placebo-supplemented control group that 
were all part of the RET intervention, the protein-supplemented 
and placebo-supplemented groups were retrieved. If a study had 
multiple time points, only the preintervention and postinterven-
tion outcomes were retrieved. Where the change in SD (ΔSD) 
was available it was collected alongside the preintervention and 
postintervention SD. Where ΔSD was not reported, the correla-
tion coefficient (corr) for each primary outcome was calculated 
according to the Cochrane Handbook for Systematic Reviews of 
Interventions:65 

	 corr = (SDpre2 + SDpost2 − SDchange2)/(2× SDpre × SDpost)	

and the ΔSD was then calculated as:

	 ∆SD =
√
(SDpre2 + SDpost2 − 2× corr× SDpre × SDpost).	

The change in mean (ΔMean) and ΔSD were calculated for 
each condition and uploaded to RevMan (Review Manager 
(RevMan), V.5.3. Copenhagen: The Nordic Cochrane Centre, 
The Cochrane Collaboration, 2014). Where studies had more 
than one protein-supplemented group (eg, soy and whey), 
measure of MVC (eg, isokinetic and isometric) or measure of 
1RM (eg, bench press and leg press) the ΔMean and ΔSD were 
independently calculated and later combined, unless other-
wise stated, using the RevMan calculator (Review Manager 
(RevMan), V.5.3. Copenhagen: The Nordic Cochrane Centre, 
The Cochrane Collaboration, 2014).

Meta-analyses
Random-effects meta-analyses were performed in RevMan 
(Review Manager (RevMan), V.5.3. Copenhagen: The Nordic 
Cochrane Centre, The Cochrane Collaboration, 2014) on the 
change in each outcome. Effect sizes are presented as mean 

difference (MD) with means±SD and 95% CIs for 1RM, TBM, 
FFM, FM, fibre CSA and mid-femur CSA and as standardised 
mean difference (SMD) and 95% CIs for MVC because it had 
multiple outcomes presented on non-comparable scales (eg, N 
and Nm).

Heterogeneity and risk of bias
Heterogeneity was assessed by χ2 and I2 and significance was set 
at p<0.05. The internal validity of each study was determined 
by domain-based evaluation to quantify risk of bias for each 
study65 and was independently performed by three investigators 
(RWM, KTM and SRM). The data included in the meta-analyses 
were restricted to studies with less than three reported high or 
unclear risk domains (predominately due to reported conflicts 
of interest and lack of blinding investigators and/or participants; 
(see online supplementary appendix 2)). Funnel plots were visu-
ally inspected to determine publication bias. Multiple sensitivity 
analyses were performed to determine if any of the results were 
influenced by the studies that were removed.

Meta-regression
In an effort to understand the sources of heterogeneity meta-re-
gressions were performed on 1RM, FFM and fibre CSA because 
they were statistically significant, had considerable unexplained 
heterogeneity (I2) and had a sufficient number of studies (≥10). 
Meta-regression was used instead of subgroup analyses to allow 
for the use of continuous covariates and to allow for the inclu-
sion of more than one covariate at a time. Four covariates were 
chosen a priori to be included in our meta-regression: baseline 
protein intake (g/kg/day), postexercise protein dose (g), chrono-
logical age  and training status because there is evidence that 
baseline protein intake,66 protein dose,14 age67 and training 
status68 could influence the efficacy of protein supplementa-
tion; summarised here.4 5 These covariates were meta-regressed 
individually and together in a random-effects meta-regression 
model using Stata (StataCorp. 2011. Stata Statistical Software: 
Release 12. College Station, Texas,  USA). The random-effects 
meta-regression used residual restricted maximum likelihood 
to measure between-study variance (τ2) with a Knapp-Hartung 
modification as recommended.69 When all four covariates were 
analysed together permutation tests were performed (n=1000) 
to address the issue of multiple testing by calculating adjusted 
p values.70 Additional covariates were identified and individually 
analysed post hoc to further explore the unexplained variance of 
the effect of protein supplementation during RET on changes in 
1RM and FFM. Continuous covariates were: MD in the change 
in protein intake (g/day), MD in the total relative protein intake 
(g/kg/day), number of repetitions/set, number of sets/exercise, 
number of exercises/session, number of sessions/week, number 
of weeks and total RET volume in kg: repetitions/set × sets/exer-
cise × exercises/session × sessions/week × intervention duration 
in weeks. Categorical variables were: protein supplement source 
(whey vs soy), sex (male vs female), type (dietary-supplement 
vs RET-supplement), whole-body RET (whole-body RET vs 
not whole-body RET) and RET supervision (supervised vs not 
supervised). Protein supplement source was limited to soy and 
whey because there were few study groups that were provided 
either a casein (n=321 59 60) or pea (n=122) protein supplement 
exclusively.

Subgroup analyses
Subgroup analyses were performed in RevMan (Review Manager 
(RevMan), V.5.3. Copenhagen: The Nordic Cochrane Centre, 
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The Cochrane Collaboration, 2014). Subgroup analyses were 
performed on changes in FFM and 1RM with training status 
(untrained vs trained) as the subgroup to generate forest plots 
and neatly present training status as a categorical variable. 
Subgroup analyses were also performed on changes in FFM with 
age categorised into subgroups (old (>45 years) and young (<45 
years)) to be presented below for the interested reader.

Break point analysis
To investigate the influence of protein intake as a continuous vari-
able on individual study arms (as opposed being limited to MDs 
between groups in a meta-regression) linear and segmental regres-
sions on the change in FFM (measured by DXA) were plotted 
against daily and baseline protein intake. Linear and segmental 
regressions were performed using GraphPad Prism (V.6, GraphPad 
Software, La Jolla, California, USA) to determine models of best fit 
as has been previously done in acute tracer trials measuring MPS.14 
Where segmental regression was the preferred model the slope 
of the second line was set to zero to determine the break point 
(biphasic regression). Each group from each study that presented 
daily or baseline protein intake with changes in FFM from DXA 
was included. Significance was set at p<0.05 and data for the 
break point  is presented as mean (95% CI).

Results
Participant characteristics
Participant details and outcomes are presented elsewhere 
(see  online  supplementary table 1. A total of 49 studies from 
17 countries met the inclusion criteria (figure 1). There were 10 
studies in resistance-trained participants and 14 study groups in 
exclusively female participants. Publications ranged from 1962 
to 2016. There was a total of 1863 participants (mean±SD; 
35±20 years).

RET characteristics
The RET characteristics are also presented elsewhere 
(see  online  supplementary table 1). The RET interventions 
lasted from 6 weeks  to 52 weeks (13±8 weeks) performing 
RET between 2 days and 5 days per week (3±1 days/week) with 
between 1 to 14 exercises per session (7±3 exercises/session), 
1  to 12 sets per exercise (4±2 sets/exercise) and anywhere 
between 3  to 25 repetitions per set (9±4 repetitions/set). Four 
studies used just lower-body RET, two studies used just knee 
extensor RET, one study used elbow flexor RET only, and two 
studies used one lower-body and one upper-body exercise only.

Protein supplementation
Details regarding the experimental (protein supplementation) 
and control (placebo- or no-supplement) groups are presented 
elsewhere (see online supplementary table 2). A range of 4 g to 
106 g of protein was supplemented per day to the protein 
group (36±30 g/day; young: 42±32 g/day; old: 20±18 g/day) 
with a range of 5 g to 44 g of protein supplemented postexer-
cise on training days (24±11 g; young: 24±12 g; old: 23±10 
g). Twenty-three conditions supplemented with whey protein, 
3 with casein protein, 6 with soy protein, 1 with pea protein, 10 
with milk or milk protein, 7 with whole food (eg, beef, yogurt, 
between-meal snack) and 13 with non-specific protein blends or 
blends containing multiple protein sources (eg, whey, casein, soy 
and egg). In 40 studies the participants consumed part or all 
of their daily protein supplement after their RET sessions. In 
36 studies with 48 different conditions authors reported either 
total (g/day) or relative (g/kg/day or %kcal/day) daily protein 

intake preintervention and/or postintervention. There was an 
increase in daily protein intake in the protein group (mean±SD; 
range: 23±41 g/day; −25 g/day to 158 g/day; p=0.004) and no 
change in the control group (1±14 g/day; −17 g/day to 40 g/
day; p=0.83) such that the change in daily protein intake was 
significantly greater in the protein group (p=0.01). Relative 
daily protein intake (g/kg/day) increased in the protein group 
(pre: 1.4±0.4, post: 1.8±0.7, Δ: 0.3±0.5 g/kg/day, p=0.002) 
and did not change in the control group (pre: 1.4±0.3, post: 
1.3±0.3, Δ: −0.02±0.1 g/kg/day, p=0.48) such that there was 
a greater change in the protein group (p<0.001). Daily energy 
intake (kcal/day) was gathered from 23 studies with 29 condi-
tions and did not change with the prolonged RET and protein 
supplementation nor was it significantly different between the 
protein or control groups (Δ protein group: 50±293 kcal/day, Δ 
control group: 70±231 kcal/day, p=0.71).

Heterogeneity and risk of bias
Significant heterogeneity was found for changes in 1RM 
(χ2=53.49, I2=33%, p=0.003) and fibre CSA (χ2=30.97, 
I2=68%, p=0.0006). Nine studies were removed based on risk of 
bias17 18 25 26 50 63 (see online supplementary appendix 2) or publi-
cation bias assessment24 32 64 (see online supplementary figure 1). 
In particular, four studies were removed from 1RM,17 26 32 50 four 
from TBM,17 18 63 64 three from FM,17 18 63 five from FFM,17 18 24 63 

64 three from MVC25 26 50 and one from fibre CSA.50

Sensitivity analyses
Sensitivity analysis was performed with the nine high-risk studies 
mentioned above included in the outcomes they were removed 
from to determine if their removal changed any of the results. The 
inclusion of those studies did not influence the difference in means 
or significance in 1RM, TBM, FFM or mid-femur CSA; however, 
when Mitchell et al50 was included in the fibre CSA assessment 
the effect of protein supplementation (310 µm2 (51, 570), p=0.02) 
was eliminated (153 µm2 (−137, 443), p=0.30). This is likely 
due to the small number of studies that included muscle biopsies 
but may warrant caution when interpreting the effect of protein 
supplementation on changes fibre CSA during RET. In no instance 
did fixed-effect meta-analysis deliver a different magnitude of 
effect or significance compared with random-effect meta-analysis.

Meta-analyses
Protein supplementation during prolonged RET significantly 
improved gains in 1RM strength (MD: 2.49 kg (0.64, 4.33), 
p=0.01; figure  2) but had no effect on MVC (SMD: 0.04 
(-0.09, 0.16), p=0.54). Protein supplementation did not have 
a significant effect on changes in TBM (MD: 0.11 kg (−0.23, 
0.46), p=0.52) but improved changes in FFM (MD: 0.30 kg 
(0.09, 0.52), p=0.007; figure 3), FM (MD: −0.41 kg (−0.70,–
0.13), p=0.005), fibre CSA (MD: 310 µm2 (51, 570), p=0.02; 
see online supplementary figure 2: panel A) and mid-femur CSA 
(MD: 7.2 mm2 (0.20, 14.30), p=0.04; see online supplementary 
figure 2: panel B) during prolonged RET.

Meta-regression.
The results from the full model meta-regressions are presented in 
table  1. When combined, baseline protein intake, protein dose, 
age and training status did not explain any of the variance in the 
changes in 1RM (15 studies, 1216 subjects, p=0.77) or FFM (15 
studies, 642 participants, p=0.12). There were insufficient obser-
vations (<10) when all covariates were compared with the changes 
in fibre CSA.
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Univariate meta-regressions on changes in 1RM and FFM 
following prolonged RET are also presented in table  1. None 
of our covariates explained any of the heterogeneity of protein 
supplementation’s effect on changes in 1RM: baseline protein 
intake (21 studies, 814 participants, p=0.59), age (27 studies, 
802 participants, p=0.78), training status (28 studies, 858 partic-
ipants, p=0.40) and post-exercise protein dose (23 studies, 589 
participants, p=0.13). In contrast, when the ability of protein 
supplementation to affect changes in FFM was evaluated with 
univariate meta-regressions, the postexercise protein dose was 
the only covariate that did not influence the efficacy of protein 
supplementation on changes in FFM (20 studies, 793 partic-
ipants, p=0.25) whereas baseline protein intake (22 studies, 
988 participants, p=0.045; see online supplementary figure 3: 
panel A), age (25 studies, 1033 participants, p=0.02; figure 4) 
and training status (26 studies, 1089 participants, p=0.03) all 
influenced the effect of protein supplementation. When the effect 
of protein supplementation on changes in FFM was evaluated 
with age stratified into two subgroups the difference between old 

(>45; 67±7 years; MD: 0.06 (-0.14, 0.26)) and young (<45; 
24±4 years; MD: 0.55 (0.30, 0.81)) participants remained signif-
icant (χ2=8.71, I2=89%, p=0.003). There were no covariates 
that explained any of the variance in the change in fibre CSA 
following RET: age (10 studies, 474 participants, I2=65%, 
Adj. R2=-3%, p=0.50), baseline protein intake (8studies, 384 
participants, I2=43%, Adj. R2=-44%, p=0.84), postexercise 
protein dose (10 studies, 270 participants, I2=77%, Adj. R2=-
38%, p=0.92) and training status (11 studies, 586 participants, 
I2=71%, Adj. R2=-24%, p=0.94).

Additional univariate meta-regressions are presented in else-
where (see online supplementary table 3). Only whether the RET 
was whole-body (27 studies, including only 4 studies that were not 
whole-body RET, I2=2%, Adj. R2=76%, p=0.01) or supervised 
(28 studies, I2=5%, Adj. R2=58%, p=0.047) explained part of 
the variance in the effectiveness of protein supplementation on 
changes in 1RM. No other covariates explained any of the variance 
associated with the efficacy of protein supplementation on changes 
in 1RM or FFM.

Figure 2  Forest plot of the results from a random-effects meta-analysis shown as mean difference with 95% CIs on one-repetition-maximum (1 RM; 
kg) in untrained and trained participants. For each study, the circle represents the mean difference of the intervention effect with the horizontal line 
intersecting it as the lower and upper limits of the 95% CI. The size of each circle is indicative of the relative weight that study carried in the meta-
analysis. The rhombi represent the weighted untrained, trained and total group’s mean difference. Total: 2.49 kg (0.64, 4.33), p=0.01, untrained: 
0.99 kg (−0.27, 2.25), p=0.12 and trained: 4.27 kg (0.61, 7.94), p=0.02.
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Figure 3  Forest plot of the results from a random-effects meta-analysis shown as mean difference with 95% CIs on lean or fat-free mass (FFM; 
kg) in untrained and trained participants. For each study, the circle represents the mean difference of the intervention effect with the horizontal 
line intersecting it as the lower and upper limits of the 95% CI. The size of each circle represents the relative weight that study carried in the meta-
analysis. The rhombi represent the weighted untrained, trained and total group’s mean difference. Total: 0.30 kg (0.09, 0.52) p=0.007, untrained: 
0.15 kg (−0.02, 0.31), p=0.08 and trained: 1.05 kg (0.61, 1.50), p<0.0001.

Table 1  Meta-regression output.

Model N

 1RM (kg) Fat-free mass (kg)

Coeff. (95% CI) τ2 Adj. R2 I2 p Value N Coeff. (95% CI) τ2 Adj. R2 I2 p Value

No covariates 28 2.49 (0.64 to 4.33) 6.05 33% 0.01 27 0.30 (0.09 to 0.52) 0.05 7% <0.01

Univariate

 � Baseline protein intake 21 2.85 (-8.15 to 13.84) 7.82 1% 37% 0.59 22 0.64 (0.02 to 1.27) 0 100% 0% 0.045

 � Protein dose 23 0.13 (-0.04 to 0.31) 3.16 40% 0% 0.13 20 0.02 (-0.01 to 0.04) 0.09 0% 0% 0.25

 � Age 27 0.01 (-0.09 to 0.11) 6.51 −9% 34% 0.78 25 −0.01 (-0.02 to 0.00) 0 100% 0% 0.02

 � Training status 28 5.77 (-2.96 to 7.13) 5.77 5% 31% 0.40 26 0.75 (0.09 to 1.40) 0.03 49% 0% 0.03

All covariates 15 5.36 10% 0% 0.77 15 0 100% 0% 0.12

 � Baseline protein intake 15 6.40 (-11.62 to 24.42) 0.43 15 −0.57 (-2.50 to 1.37) 0.95

 � Protein dose 15 0.05 (-0.78 to 0.88) 0.70 15 −0.01 (-0.07 to 0.06) 0.99

 � Age 15 0.07 (-0.18 to 0.33) 0.23 15 −0.01 (-0.02 to 0.00) 0.19

 � Training status 15 −2.81 (-20.80 to 15.17) 0.63 15 1.19 (-1.34 to 2.19) 0.48
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Break point analysis
Biphasic regression (42 study arms, 723 participants) explained 
more variation than a linear regression between the change in 
FFM and daily protein intake (break point=1.62 (1.03, 2.20) 
g/kg/day, slope=1.75, R2=0.19, df=36) and is presented as 
a segmental regression despite not being statistically signifi-
cant (p=0.079;figure  5) When plotting the change in FFM 
against baseline protein intake, linear regressions explained 
significantly more variance than biphasic regressions in both 
young (slope=−1.54 g/kg/day, R2=0.17, df=34) and old 
(slope=0.16 g/kg/day, R2=0.04, df=14) participants with a 
statistically significant difference between age groups (p=0.042; 
see online supplementary figure 3: panel D).

Discussion
This is the largest meta-analysis on interventions including 
dietary protein supplementation with muscle and strength-re-
lated outcomes during prolonged RET to date. Our main 
finding was that dietary protein supplementation augmented 
RET-induced increases in 1RM strength (figure  2) and FFM 
(figure 3). For changes in FFM, dietary protein supplementation 
was more effective in resistance-trained individuals (table 1 and 
figure 3), less effective with increasing chronological age (table 1 
and figure 4) and did not increase beyond total protein intakes 
of  ~1.6 g/kg/day (figure  5). Our data show dietary protein 
supplementation is both sufficient and necessary to optimise 
RET adaptations in muscle mass and strength.

Previous meta-analyses6–12 have reached varying conclusions 
when examining the impact of protein supplementation  on 
changes in lean mass or FFM and 1RM strength during RET. The 
discrepancies are likely a consequence of differing study inclusion 
criteria. For example, previous meta-analyses have included only 
trained participants,8 only older adults,9 11 supplements containing 
more than just protein,8 10 only one source of protein,8 12 shorter 
RET interventions,10 12 frail/sarcopenic participants7 9 11 and/or 
participants who were energy-restricted.6 7 12 Previously, the largest 
comprehensive meta-analysis to date on protein supplementation 
during RET included 22 studies and 680 participants7 and did 
show a significant effect of protein supplementation on RET-stim-
ulated gains in strength and FFM. In agreement with this previous 

report,7 and strengthening the conclusion of that same report by 
including 49 studies and 1863 participants, we show that protein 
supplementation augmented gains in FFM and strength with RET.

Strength
The average RET-induced increase, with all measures of 1RM 
included, was 27 kg (mean±SD; 27±22 kg22 32). Notably, dietary 
protein supplementation augmented the increase in 1RM strength 
by 2.49 kg (9%; figure  2; see  online  supplementary figure 4), 
which strongly suggests that the practice of RET is a far more 
potent stimulus for increasing muscle strength than the addition 
of dietary protein supplementation. None of our covariates (age, 
training status, postexercise protein dose or baseline protein 
intake) influenced the efficacy of protein supplementation on 
changes in 1RM strength. Improving performance of a specific 
task (eg, the 1RM of an exercise) is predominately determined 
by the practice of that task.71 Though protein supplementation 
may slightly augment changes in 1RM (~9%), which may be 
important for those competing in powerlifting or weightlifting, 
it is pragmatic to advocate that if an increase in 1RM is the 
objective of an RET programme, a sufficient amount of work 
and practice at or around the 1RM is far more influential than 
protein supplementation.

Muscle mass
In addition to increasing changes in muscle strength, RET alone 
(≥6; 13±8 weeks) resulted in an increase in FFM (1.1±1.2 kg), an 
increase in fibre CSA (808±) and an increase in mid-femur CSA 
(52±30 mm2). Dietary protein supplementation augmented the 
increase in FFM by 0.30 kg (27%; figure 3; see online supplemen-
tary figure 4), fibre CSA by 310 µm2 (38%; see online supplementary 
figure 2: panel A) and mid-femur CSA by 7.2 mm2 (14%; 
see  online  supplementary figure 2: panel B). The postexercise 
protein dose did not affect the efficacy of protein supplementa-
tion on RET-induced changes in FFM whereas training status 
(positive), age (negative) and baseline protein intake (positive) did. 
Relative to untrained participants, resistance-trained participants 
have a smaller potential for muscle growth72 and an attenuated 
postexercise muscle protein turnover.73 As a result, we speculate 
that trained persons may have less ‘degrees of freedom’ to change 

Figure 4  Random-effects univariate meta-regression between age 
and the mean difference in fat-free mass (FFM) between groups. 
Each circle represents a study and the size of the circle reflects the 
influence of that study on the model (inversely proportionate to the SE 
of that study). The regression prediction is represented by the solid line 
(−0.01 kg (−0.02,–0.00), p=0.02).

Figure 5  Segmental linear regression between relative total protein 
intake (g/kg body mass/day) and the change in fat-free mass (ΔFFM) 
measured by dual energy X-ray absorptiometry. Each circle represents a 
single group from a study. Dashed arrow indicates the break point=1.62 
g protein/kg/day, p=0.079. Solid arrow indicates 95% CI, (1.03 to 2.20).
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with RET and therefore have a greater need for protein supple-
mentation to see increases in muscle mass. Our thesis is supported 
by the observation of a more consistent impact of protein supple-
mentation on gains in FFM in resistance-trained individuals than 
in novice trainees (figure 3).

Older individuals are anabolically resistant74 and require 
higher per-meal protein doses to achieve similar rates of MPS, 
the primary variable regulating changes in skeletal muscle 
mass,75 compared with younger participants.14 The average 
supplemental daily protein dose given to older participants was 
surprisingly low (20±18 g/day); thus, it is perhaps not surprising 
that we did not find that older individuals were responsive to 
protein supplementation (figure 4). Though age did not affect 
the RET-induced change in fibre CSA, the negative effect age 
had on changes in FFM leads us to speculate that even though 
exercise sensitises muscle to the effect of protein ingestion,3 
older persons have an increased need for higher protein intakes 
to optimally respond to this effect and see gains in FFM.76

It has been theorised that the increased deviation from normal 
protein intake (g/kg/day) will positively affect the RET-induced 
gains in FFM.77 Contrary to this thesis, we found that a higher 
prestudy protein intake actually resulted in a greater effect of 
protein supplementation on changes in FFM (table 1); however, 
this was likely driven by the lower mean baseline protein intake 
(old: 1.2±0.2  g/kg/day, young: 1.5±0.4 g/kg/day) and daily 
protein dose (old: 20±18  g/day, young: 42±32 g/day) in the 
studies that included older participants (see online supplemen-
tary figure 3: panel B and D). Indeed, a sensitivity analysis that 
did not include older (>45; 65±14 years) versus younger (<45; 
24±4 years) individuals found that baseline protein intake had 
no effect on the efficacy of protein supplementation in young 
individuals (see online supplementary figure 3, panel C). In an 
unadjusted meta-regression analysis, a higher baseline protein 
intake in young individuals actually attenuated the change in 
FFM (see online supplementary figure 3, panel D).

A goal of this meta-analysis was to deliver evidence-based recom-
mendations that could be readily translated. A crucial point is that 
even though the mean baseline protein intake for the 1863 partic-
ipants was ~1.4 g protein/kg/day, which is 75% greater than the 
current US/Canadian recommended dietary allowance (RDA),78 
an average supplementation of ~35 g protein/day still augmented 
RET-stimulated gain in FFM (figure  3) and 1RM strength 
(figure 2). Thus, consuming protein at the RDA of 0.8 g protein/
kg/day appears insufficient for those who have the goal of gaining 
greater strength and FFM with RET. This conclusion is emphasised 
for older men79 and women80 81 wishing to obtain strength and 
gain lean mass with RET and protein supplementation.

A recent retrospective analysis showed a ‘breakpoint’ for 
the stimulation of MPS when ingesting an isolated protein 
source at 0.24 g protein/kg and 0.40 g protein/kg in younger 
and older participants, respectively.14 Given the observation 
of a dose-responsive relationship between protein intake and 
MPS82–85 and the fact that MPS is aligned with muscle hyper-
trophy,13 we elected to use an identical two-segment regression 
approach between total daily protein intake and changes in 
FFM (figure  5) as has been done for changes in protein dose 
and MPS.14 Here we provide significant insight (using 42 study 
arms including 723 young and old participants with protein 
intakes ranging from 0.9 g protein/kg/day to 2.4 g protein/kg/
day) by reporting an unadjusted plateau in RET-induced gains 
in FFM at 1.62 g protein/kg/day (95% CI: 1.03 to 2.20). These 
results are largely in congruence with previous narrative reviews 
that comment on the optimal nutritional strategies to augment 
skeletal muscle adaptation during RET.3 86 Given that the CI of 

this estimate spanned from 1.03 to 2.20, it may be prudent to 
recommend ~2.2 g protein/kg/d for those seeking to maximise 
resistance training-induced gains in FFM. Though we acknowl-
edge that there are limitations to this approach, we propose that 
these findings are based on reasonable evidence and theory and 
provide a pragmatic estimate with an incumbent error that the 
reader could take into consideration.

Although the present analysis provides important and novel 
data, there are limitations that we acknowledge. First, the lack of 
RET research in older individuals has led to inconclusive recom-
mendations from previous meta-analyses specifically focusing on 
older individuals.9 11 Indeed, in this manuscript there were only 13 
studies that met our inclusion criteria in older (>45 years) individ-
uals and only six of those studies reported baseline protein intakes 
with changes in FFM. In addition, only four studies27 29 33 45 in older 
individuals had participants that consumed what we consider to 
be close to optimal total protein intake (~1.2 g/kg/day to 1.6 g/kg/
day) in non-exercising adults5. Furthermore, only two studies23 30 
in older individuals provided a postexercise supplemental protein 
dose that we consider to be close to optimal (~35–40 g) to stimu-
late FFM accretion in elderly individuals.76 Given that older adults 
require more protein per day,79–81 consume less protein per day87 
and that dietary protein ingestion and RET are effective strategies to 
maintain muscle mass and function with age,67 future RET research 
should focus on using higher protein doses (or potentially higher 
leucine), larger sample sizes and longer interventions in ageing 
populations. Second, we included a variety of additional covari-
ates into univariate meta-regressions to elucidate the variables that 
may modify whether protein supplementation affects RET-induced 
changes in muscle mass and strength. Such an approach is generally 
considered to be hypothesis generating. The only significant findings 
we found were that if the RET sessions were whole-body (adjusted 
R2=76%, p=0.01) or supervised (adjusted R2=58%, p=0.047), 
protein supplementation was more effective at augmenting changes 
in 1RM. No variable affected changes in FFM (see online supple-
mentary table 3). Given the relatively small effect that protein 
supplementation has on changes in FFM and 1RM, clearly other 
variables as a component of RET programmes are of much greater 
importance. Our meta-analyses also only included studies with 
participants that were at or above their energy requirements, which 
may have omitted the significant impact protein has during periods 
of weight loss with RET.88 Lastly, we found that the postexercise 
protein dose did not affect the efficacy of protein supplementation 
on RET-induced changes in FFM. Our analysis, and those from 
others,6 leads us to conclude that the specifics of protein supple-
mentation (eg, timing, postexercise protein dose or protein source) 
play a minor, if any, role in determining RET-induced gains in FFM 
and strength over a period of weeks. Instead, our results indicate 
that a daily protein intake of ~1.6 g/kg/day, separated into ~0.25 g/
kg doses,14 is more influential on adaptive changes with RET, at 
least for younger individuals.

Conclusion
Dietary protein supplementation augments changes in muscle 
mass and strength during prolonged RET. Protein supple-
mentation is more effective at improving FFM in young or 
resistance-trained individuals than in older or untrained individ-
uals. Protein supplementation is sufficient at  ~1.6 g/kg/day in 
healthy adults during RET. Based on limited data we observed no 
overtly apparent sex-based differences but acknowledge that far 
less work has been done in women than men. This analysis shows 
that dietary protein supplementation can be, if protein intake 
is less than 1.6 g protein/kg/day, both sufficient and necessary 
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to optimise RET-induced changes in FFM and 1RM strength. 
However, performance of RET alone is the much more potent 
stimulus, accounting, at least according to this meta-analysis, for 
a substantially greater portion of the variance in RET-induced 
gains in muscle mass and strength.

Summary box

Background
►► There is no consensus on the efficacy of protein 

supplementation during prolonged resistance exercise 
training (RET).

Novel findings
►► Dietary protein supplementation augments changes in 

fat-free mass (FFM, (0.30 kg (0.09, 0.52), p=0.007) and 
one-repetition-maximum strength (2.49 kg (0.64, 4.33), 
p=0.01) during prolonged RET.

►► Dietary protein supplementation during RET is more 
effective at increasing changes in FFM in resistance-trained 
individuals (0.75 kg (0.09, 1.40), p=0.03) and less effective 
in older individuals (−0.01 kg (−0.02,–0.00), p=0.02).

►► Protein supplementation beyond a total daily protein intake 
of ~1.6 g/kg/day during RET provided no further benefit on 
gains in muscle mass or strength.
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