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A B S T R A C T   

Muscles and bones are intricately connected tissues displaying marked co-variation during development, growth, 
aging, and in many diseases. While the diagnosis and treatment of osteoporosis are well established in clinical 
practice, sarcopenia has only been classified internationally as a disease in 2016. Both conditions are associated 
with an increased risk of adverse health outcomes such as fractures, dysmobility and mortality. Rather than 
focusing on one dimension of bone or muscle mass or weakness, the concept of musculoskeletal frailty captures 
the overall loss of physiological reserves in the locomotor system with age. The term osteosarcopenia in 
particular refers to the double jeopardy of osteoporosis and sarcopenia. Muscle-bone interactions at the 
biomechanical, cellular, paracrine, endocrine, neuronal or nutritional level may contribute to the pathophysi-
ology of osteosarcopenia. The paradigm wherein muscle force controls bone strength is increasingly facing 
competition from a model centering on the exchange of myokines, osteokines and adipokines. The most 
promising results have been obtained in preclinical models where common drug targets have been identified to 
treat these conditions simultaneously. In this narrative review, we critically summarize the current under-
standing of the definitions, epidemiology, pathophysiology, and treatment of osteosarcopenia as part of an 
integrative approach to musculoskeletal frailty.   

1. Introduction 

The musculoskeletal system is comprised of muscles, bones, carti-
laginous joints and tendons. They are not only literally connected to 
each other, the biology and homeostasis of these tissues are heavily 
intertwined and interdependent. Both clinically and in experimental 
models, the compromise of one tissue triggers a decline in all others. 

This review will focus on osteosarcopenia as part of the broader 
context of musculoskeletal frailty. We will update and expand our pre-
vious review on muscle-bone interactions [1], which can be considered 
the pathophysiological substrate for osteosarcopenia. We will first 
define the different concepts, before discussing the pathophysiology and 
treatment of osteosarcopenia. 

1.1. Sarcopenia 

Sarcopenia is defined as a generalized and progressive skeletal 
muscle disorder involving accelerated loss of muscle mass and function 
[2]. Rosenberg coined the term in 1988, originally referring to the 
progressive decline in lean muscle mass, creatinine excretion, basic 
metabolic rate and muscle strength, which starts after the age of 20–30 
years and continues unabatedly into the oldest old [3]. Concomitant 
with muscle atrophy, fatty infiltration between and within the muscles 
(i.e. myosteatosis) was already noted [3]. 

The emphasis remained on muscle mass (which has a close associa-
tion with strength and power) when Baumgartner et al. [4] operation-
ally defined sarcopenia as an ALM/height2 (appendicular lean mass i.e. 
of the arms and legs, measured by dual-energy X-ray absorptiometry, 
DXA) of more than two standard deviations below the mean of a young 
adult reference group. More recent sarcopenia definitions are shown in 
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Table 1 [5]. These definitions give priority to impaired physical per-
formance and low muscle strength or power, which decline more in old 
age than muscle mass, and have consistently shown stronger associa-
tions with various outcomes than muscle mass per se [2]. 

Sarcopenia becomes more prevalent with age and is associated with 
disability, loss of functional independence [2,3,4] and osteoporosis [6]. 
Depending on the definition used and the population studied, the 
prevalence of sarcopenia may vary tremendously (e.g. from 0.4 % to 35 
% in older men [7]) and be higher in either men or women [8]. Primary 
(age-related) and secondary sarcopenia are distinguished, with similar 
underlying causes as for secondary osteoporosis (e.g. cancer, chronic 
obstructive pulmonary disease, heart failure, critical illness, diabetes 
mellitus, glucocorticoids or other drugs) [2,9]. 

1.2. Cachexia and sarcopenic obesity 

A closely related term is cachexia (from Greek kakós, bad and héxis, 
condition/state of body), which refers to a generalized loss of muscle 
mass, with or without fat mass [10]. Cachexia is associated with bone 
loss in tumor-bearing mice [11], although human studies are limited 
[12,13]. Cachexia causes weakness, fatigue, falls, fractures and mor-
tality, without necessarily altering body composition. Conversely, aging 
adults may lose muscle and bone mass while gaining fat mass, without 
apparent changes in body weight. 

Obesity is characterized not just by excess body weight but by excess 
adiposity and a relative deficit in muscle mass (i.e. obese people typi-
cally have normal or increased muscle mass, but not commensurate to 
their body weight). The term sarcopenic obesity refers to the combi-
nation of a body mass disorder (obesity) with low skeletal muscle mass 
for body weight [14]. Sarcopenia and obesity are independently asso-
ciated with fall risk, and fracture risk is increased in older men with 
sarcopenic obesity compared to non-sarcopenic obese men [15]. Simi-
larly, fracture risk may be increased in osteopenic obesity (obese 
people also have a relative deficit in bone mineral density [BMD] and 
low bone turnover, in association with insulin resistance [16]) and the 
trinity of osteosarcopenic obesity [17]. 

1.3. Osteosarcopenia 

Osteosarcopenia [18] or sarco-osteoporosis [19] could be diag-
nosed in individuals who satisfy diagnostic criteria for both sarcopenia 
and either osteopenia or osteoporosis. Studies on osteosarcopenia typi-
cally use DXA, (regional) computed tomography or magnetic resonance 
imaging [20], although other methods like deuterated creatinine may be 
more accurate for whole-body muscle mass [21]. Bioelectrical imped-
ance analysis [14,22], ultrasound-based techniques [23] or biomarkers 
[24,25] could be useful to screen for osteosarcopenia. The prevalence of 
osteosarcopenia in community-dwelling older adults varied 5–37 % 
across studies, with a higher prevalence at older ages and in patients 
with prior fractures (46 %) [26]. One large study found a similar prev-
alence in women and men [27]. 

A cross-sectional study in a falls and fracture clinic showed that 
osteosarcopenic individuals were older, had lower grip strength, lower 
T-scores, worse balance and less functional capacity compared to those 
with sarcopenia or osteoporosis alone [18,28]. The underlying tenet is 
that the combination of osteoporosis and sarcopenia should predict 
adverse outcomes (notably fractures, loss of functional independence, 
impaired mobility and mortality) beyond the predictive value of each 
condition separately [23,29,30]. However, some studies found no 
increased fall or fracture risk in osteosarcopenic individuals compared to 
those with either condition alone [31,32]. 

It is now clear from large population-based studies that (i) low 
muscle mass and poor physical performance are associated with bone 
loss and microarchitectural decay [33] without necessarily affecting 
DXA BMD [34], (ii) physical performance and probably also muscle 
strength are associated with fracture risk, independent of BMD 
[33,35,36], while (iii) muscle mass is not predictive per se [35,36]. 
Moreover, the MrOS study has shown that sarcopenia definitions 
(particularly severe sarcopenia according to EWGSOP2, albeit at low 
prevalence) predict major osteoporotic fractures and hip fractures in-
dependent of BMD [7], possibly via fall risk. Poor muscle strength and 
performance are also associated with post-fracture mortality but not 
refracture risk [37]. Based on this evidence, we propose that the direct 
and indirect effects of sarcopenia and osteoporosis on falls, fractures and 
mortality can be conceptualized as shown in Fig. 1. 

Table 1 
Diagnostic criteria for sarcopenia.   

Cut-points for 
women 

Cut-points for 
men 

FNIH: weakness and low lean mass  
- Weakness Grip strength 

< 16 kg 
Grip strength 
< 26 kg 

- Low lean mass: ALM adjusted for BMI 
Alternative: Unadjusted ALM 

ALMBMI <

0.512 
ALM < 15.02 
kg 

ALMBMI <

0.789 
ALM < 19.75 
kg 

IWGS: slow gait speed + low muscle mass  
- Slow gait speed Gait speed < 1.0 m/s 
- Low muscle mass ALM/h2 ≤

5.67 kg/m2 
ALM/h2 ≤

7.23 kg/m2 

EWGSOP2:  
- Probable sarcopenia (low muscle strength): 
any of the following 

Grip strength 
< 16 kg 

Grip strength 
< 27 kg 

>15 s for 5 chair rises 
- Sarcopenia (low muscle strength + low 
muscle mass): previous + any of the 
following 

ALM < 15 kg 
ALM/h2 < 6.0 
kg/m2 

ALM < 20 kg 
ALM < 7.0 kg/ 
m2 

- Severe sarcopenia (sarcopenia + low 
physical performance): previous + any of the 
following 

Gait speed ≤ 0.8 m/s 
SPPB ≤ 8 points 
TUGT ≥ 20 s 
400 m walk test ≥ 6 min or non- 
completion 

ALM = appendicular lean mass; BMI = body mass index; EWGSOP2 = European 
Working Group on Sarcopenia in Older People 2; FNIH; Foundation for the 
National Institutes of Health; IWGS = International Working Group on Sarco-
penia; SPPB = Short Physical Performance Battery; TUGT = Timed Up-and-Go 
Test. 

Fig. 1. Proposed diagram of the relationships between sarcopenia, osteopo-
rosis, their determinants (such as physical activity), their components (such as 
muscle mass and strength or performance, for sarcopenia), and outcomes 
including falls, fractures and mortality. Green and red arrows indicate positive 
and negative associations, respectively. BMD = bone mineral density. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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1.4. Musculoskeletal frailty 

In sarcopenia, low muscle mass is blamed for weakness and impaired 
physical function [2]. While muscle mass is indeed a prerequisite for 
strength, size is not all that matters, and other components of the 
musculoskeletal system should not be ignored. For example, rotator cuff 
tears are very common in older adults and lead to muscle atrophy and 
functional decline in the upper limbs. Falls, even if not related to 
musculoskeletal causes (e.g. from syncope or benzodiazepines), impair 
quality of life, increase fear of falling, reduce exercise behaviors and 
increase further fall risk. 

In analogy to metabolic syndrome, Binkley et al. [38] proposed 
dysmobility syndrome as a constellation of six risk factors (osteopo-
rosis, low lean mass, history of falls within the past year, slow gait speed, 
low grip strength and high fat mass) showing syndromic association 
with falls and fractures when three or more risk factors were present. 
Dysmobility syndrome was associated with fracture risk, independent of 
and with greater hazard ratios than age or FRAX score with BMD [39]. 
Some overlap with the Fried frailty phenotype (which consists of un-
intentional weight loss, poor handgrip strength, self-reported exhaus-
tion, slow walking speed and low physical activity) should be noted 
[40]. Of note, most (if not all [41]) osteosarcopenic older adults will 
have frailty, and osteosarcopenia is a very strong risk factor for frailty 
[42]. 

In summary, considering the musculoskeletal system as a whole may 
offer diagnostic and therapeutic opportunities beyond current tissue- 
specific dogmas [38]. The age-related decline in physiological reserves 
in the musculoskeletal system could be conceptualized as musculoskel-
etal frailty [40], given the astonishing overlap between sarcopenia, 
cachexia and frailty criteria. 

2. Pathophysiology of osteosarcopenia 

2.1. A life course approach 

Muscles and bones display a remarkable degree of covariation across 
the lifespan. This begins in utero where not only genetic and epigenetic 
programming but also biomechanical and paracrine interactions shape 
musculoskeletal development [43]. Consequently, detrimental nutri-
tional or environmental exposures during pregnancy may influence 
offspring musculoskeletal health [44]. Birth weight has been indepen-
dently associated with grip strength in older adults [45]. 

In growing children, a correlation between muscle and bone mass is 
evident [46]. In experimental models, muscle hypertrophy alters bone 
geometry in young adult mice, particularly at tendon insertion sites 
[47,48]. A sedentary lifestyle and lack of physical activity in turn, may 
determine low peak bone and muscle mass acquisition in children, 
particularly in vulnerable developmental windows such as puberty. 
Many chronic diseases in children or treatment with e.g. glucocorticoids 
can lead to concomitant osteopenia and muscle weakness [9,49]. We 
therefore propose a research agenda for osteosarcopenia in pediatric 
populations (e.g. in Duchenne muscular dystrophy [50], cystic fibrosis 
[51] or cerebral palsy [20]). Prevention and treatment of osteosarco-
penia should be a lifelong consideration, especially through physical 
exercise recommendations. 

Each of the mechanisms discussed in the following sections may 
determine the risk of osteosarcopenia at different stages of life. 

2.2. Evidence from genetic studies 

Genome-wide association study (GWAS) meta-analysis has revealed 
single-nucleotide polymorphisms (SNPs) at seven loci associated with 
lean mass [52]. These can be categorized as positively associated with 
both lean and fat mass (so-called sumo wrestler phenotype with adverse 
metabolic profile, e.g. SNPs near the FTO and MC4R genes), or selec-
tively with lean mass (favorable metabolic profile). Two other SNPs 

showed intermediate phenotypes, and one (in/near IRS1) associates 
with a lipodystrophic phenotype [52]. 

In the much larger U.K Biobank, 799 loci were identified which 
explained ~15.5 % of the variance in ALM [53]. A GWAS specific for 
muscle weakness in older persons (by EWGSOP criteria) identified 15 
susceptibility loci [54]. Overall, 73 loci were consistently associated 
with lean mass, handgrip strength and self-reported walking pace in the 
U.K. Biobank [55]. Individually, many of these SNPs were associated 
with adiposity, diabetes mellitus, tiredness, falls, BMD and physical 
activity, among several other phenotypes [55]. 

For osteosarcopenia, a Mendelian randomization study showed a 
causal influence of handgrip strength on fracture risk [56]. Another 
large GWAS meta-analysis also found an inverse association between 
handgrip strength and fracture risk [57]. Two recent studies found a few 
genetic signals associated with both BMD and (arm, leg or trunk) lean 
mass, particularly for signals near MC4R [58,59]. Interestingly, a bi- 
directional Mendelian randomization study found evidence of a posi-
tive effect not only of handgrip strength on BMD, but also of BMD on 
handgrip strength and fat-free mass [60]. 

We conclude that there is consistent evidence for genetic de-
terminants of body composition. These associations extend to meta-
bolism but are not always well aligned with the proposed phenotypes of 
sarcopenia, osteosarcopenia, sarcopenic obesity etc. Given this complex 
reality, a reconsideration of the current classification of body mass and 
body composition disorders may be warranted. 

2.3. Biomechanical loading 

Bones are exquisitely sensitive to mechanical signals [1]. Because of 
lever effects, muscle contraction forces exert much greater loads on bone 
than ground reaction forces (impact loading) [1]. These two types of 
biomechanical loading can be manipulated selectively in experimental 
models: bone loss is more pronounced with the combination of muscle 
paralysis (e.g. from botulinum toxin injection) and hindlimb unloading, 
than from either separately [61]. Conversely, skeletal muscle stimula-
tion prevents disuse osteopenia [62]. Thus, the covariation between 
muscle and bone mass may be largely determined by the beneficial ef-
fects of physical exercise on both tissues, and biomechanical signals that 
bone derives predominantly from muscle [1]. However, the common 
fate of both tissues may also be determined at the cellular and molecular 
level by nutritional, paracrine, endocrine or neuronal regulation (Fig. 2). 

2.4. Nutrition 

Both muscles and bones consume large amounts of energy, which 
explains their common decay in catabolic states such as malnutrition, 
anorexia nervosa, athletes’ triad or critical illness. Both sarcopenia and 
aging may cause dysphagia (sarcopenic dysphagia or presbyphagia), 
which further compromises musculoskeletal health. A small study in 
geriatrics found greater malnutrition in osteosarcopenia patients than in 
those with sarcopenia or osteoporosis alone [63]. Loss of appetite (incl. 
anorexia of aging) also contributes to cachexia and is a candidate target 
for osteosarcopenia drug development (e.g. using ghrelin receptor ago-
nists, see below). 

Numerous micronutrients regulate bone and muscle homeostasis. 
However, the evidence to support their role in osteosarcopenia is low. 
There are other common environmental determinants of osteoporosis 
and sarcopenia, including pollution, smoking, alcohol and drug abuse, 
education, socioeconomic status, etc. which lie however beyond the 
scope of this review. 

2.5. Paracrine regulation: myokines, osteokines and adipokines 

Muscle- or bone-cell derived factors that influence the neighboring 
tissue in a paracrine fashion are increasingly recognized. Muscle is one 
of the largest internal organs, with an elaborate secretome [64]. 
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Pedersen et al. [65] coined the term myokines when they showed that 
the cytokine interleukin 6 (which regulates bone mass) is strongly 
upregulated in myocytes upon contraction and released into circulation 
in large amounts. Other examples of myokines with known roles in bone 
biology are shown in Table 2. However, the importance of these muscle- 
derived factors for muscle-bone interactions and musculoskeletal 
coupling in response to exercise/disuse, is often poorly understood in 
vivo. 

Irisin (which is cleaved from fibronectin type III domain-containing 
protein 5, FNDC5) is a myokine released by skeletal muscle upon 
contraction, which exerts favorable actions, not only on brain, muscle 
itself and adipose tissue [66,67], but also on bone in mouse models 
[66,68]. Irisin binds αV/β5 integrin [67] and may act on osteocytes to 
promote sclerostin expression and prevent their apoptosis [69,70]. In 
osteoblasts, irisin promotes differentiation [71] and may downregulate 
the senescence marker p21 [72]. Irisin also stimulates osteoclasto-
genesis directly [73]. There is also some evidence in humans for a 
positive association between irisin levels and BMD [72]. Furthermore, 
parathyroid hormone may downregulate muscle irisin expression and 
circulating irisin levels [74]. 

Apart from myokines, muscles also release peptides, lipids, amino 
acids, metabolites and nucleic acids that may act on distant cells [64]. 
For example, exercise stimulates muscle synthesis of kynurenic acid, 
which also regulates bone resorption in mouse models [75]. For many 
other muscle-derived factors however, the mechanisms and importance 
for bone homeostasis require further study. 

Reciprocally, osteoblasts and osteocytes also release factors that in-
fluence muscle physiology. Karsenty’s group has shown that in mouse 
models, undercarboxylated osteocalcin enhances exercise capacity, 
muscle metabolism and exercise-induced release of interleukin 6 from 
muscle [76]. Similarly, osteoglycin is a proteoglycan released from 
muscles and bones, which inhibits myoblast proliferation, bone forma-
tion and glucose metabolism [77]. Exercise also downregulates circu-
lating sclerostin levels, which may influence exercise-induced 
adaptations in subcutaneous white adipose tissue [78]. Myotubes and 

muscle biopsies show expression of receptor activator nuclear factor κB 
(RANK), and treatment with osteoprotegerin (a decoy receptor for RANK 
ligand, RANKL) restores fast-twitch muscle function in mdx mice (a 
model for Duchenne muscular dystrophy) [79] and normal mice [80]. 
Also in mice with non-metastatic ovarian cancer, RANKL blockade re-
duces not only bone loss but also cachexia [11]. 

Adipokines such as leptin and adiponectin are adipocyte-derived 
cytokines that regulate bone, muscle and energy metabolism. More-
over, visceral fat recruits immune cells and leads to low-grade systemic 
inflammation, which compounds insulin resistance. However, to what 
extent low-grade inflammation in sarcopenic obesity contributes to bone 
loss, has been poorly studied. In mice, globular adiponectin restored 
ovariectomy-induced bone loss, sarcopenia and insulin resistance [81], 
thus offering an interesting therapeutic strategy for osteosarcopenia. On 
the other hand, several diabetes or cardiovascular drugs such as met-
formin, losartan or glucagon-like peptide receptor agonists may exert 
favorable effects on both sarcopenia as well as osteoporosis, although 
these findings require confirmation [82]. 

In summary, osteokines and myokines are increasingly recognized to 
play a role in the favorable effects of exercise on the musculoskeletal 
system, although more human studies and clinical applications are still 
needed. 

2.6. Endocrine co-regulation 

Deficiency in anabolic hormones might contribute to concomitant 
musculoskeletal deficits. We refer to previous reviews for a more in- 
depth discussion [1,40], but we will highlight some recent advances 
here. Overall, in older adults, low levels of sex steroids, 25-hydroxyvita-
min D and insulin-like growth factor (IGF)-1 are associated with bone 
loss, but their association with incident sarcopenia remains unclear 
[5,83,84]. 

2.6.1. Vitamin D 
Vitamin D deficiency impairs intestinal calcium absorption, triggers 

Fig. 2. Schematic diagram of patho-
physiological determinants of osteo-
sarcopenia. Muscles and bones are 
under shared endocrine, nutritional 
and neuronal control. With regards to 
direct muscle-bone interactions, there 
is reciprocal communication of growth 
factors, cytokines and myokines. At the 
cellular level, tissue homeostasis may 
be determined by the differentiation of 
pluripotent progenitor cells into either 
the osteoblast/osteocyte, myocyte or 
adipocyte lineage (white, brown or 
bone marrow adipose tissue; WAT, 
BAT or BMAT, respectively). Muscles 
are also essential for physical exercise 
and biomechanical signals on bone, 
mainly via muscle pull on tendon 
insertion sites but also via ground re-
action forces. Adapted and reproduced, 
from Laurent et al. [1], with permis-
sion. (For interpretation of the refer-
ences to colour in this figure legend, 
the reader is referred to the web 
version of this article.)   
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secondary hyperparathyroidism and hypophosphatemia, causing bone 
loss at the expense of normocalcemia. 

Experimental vitamin D deficiency [85] or Vdr knockout triggers 
muscle atrophy [86]. Muscle-specific Vdr knockdown in rodents reduces 
muscle mass [87,88], running speed and strength [84], with evidence of 
muscle fiber remodelling [89]. Conversely, Vdr overexpression induces 
muscle hypertrophy, and VDR expression is upregulated in humans by 
resistance training [90]. Muscle atrophy during disuse was potentiated 
following Vdr knockdown in neural crest cells rather than muscle cells 
[86], suggesting that vitamin D influences neuronal control of muscu-
loskeletal atrophy. In addition, Vdr deletion has also been associated 
with unfavorable metabolic effects and impaired neuromuscular control 
[91]. 

In summary, these preclinical studies suggest mechanisms by which 
vitamin D deficiency or excess could increase the risk of osteosarcope-
nia, falls and fractures. 

2.6.2. Growth hormone (GH) and IGF signaling 
GH exerts anabolic actions on muscles and bones during growth, 

partly via its cognate receptor and partly via liver-secreted IGFs [92]. 
During aging however, unfavorable metabolic effects may dominate, 
since GH-receptor knockout mice have extended lifespan and are pro-
tected from frailty and multiple age-related conditions. Muscle-specific 
GH-receptor deletion results in favorable metabolic changes without a 
clear muscle or bone phenotype, suggesting that the beneficial effects of 
GH on muscle are indirect [92,93]. Adipocyte-specific GH-receptor 
deletion produces favorable metabolic effects with improved grip 

strength [94]. 
Conditional deletion of the GH-receptor in mature osteoblasts and 

osteocytes compromises periosteal bone expansion and bone formation 
during growth [93]. Deletion of the IGF-1 receptor in osteoblasts and 
osteocytes, impairs cortical bone thickness and mildly reduced trabec-
ular bone volume in female mice [93], although the importance of this 
pathway during aging remains unknown. 

Overall, mechanistic studies suggest that GH/IGF-1 signaling is 
essential for musculoskeletal development during growth, whereas 
excess may be detrimental in old age, mainly via indirect unfavorable 
metabolic effects. 

2.6.3. Androgens and estrogens 
Estrogens play an important role in maintaining skeletal integrity 

throughout life, whereas androgens via the androgen receptor determine 
periosteal bone expansion during puberty [5]. Conditional deletion of 
the androgen receptor in satellite cells or fast-twitch muscle fibers pro-
duces an osteosarcopenic phenotype [95,96]. Androgens also exert 
antiresorptive effects in bone via the androgen receptor in osteoblasts as 
well as osteocytes, but not osteoclasts [97,98]. Indirectly, the androgen 
receptor in neuronal cells also prevents cortical thinning and trabecular 
bone loss in the vertebra in mice [99]. Interestingly, androgen defi-
ciency increases the skeletal response to mechanical loading [100]. 
Moreover, both androgens and estrogens regulate physical activity be-
haviors via dopaminergic pathways [101]. Finally, both androgens 
[102] and estrogens regulate fat mass, insulin secretion and resistance, 
in part directly via their nuclear receptors in adipocytes [103]. 

Thus, testosterone could be a candidate treatment for osteosarco-
penia. However, the potential side effects e.g. on the prostate or car-
diovascular system are a concern. 

2.7. Activin receptor signaling pathway 

Activins and growth- and differentiation factors (GDFs), together 
with bone morphogenetic proteins, are part of the transforming growth 
factor-β superfamily. Activin A and GDF8 (myostatin) are inhibitors of 
muscle and bone mass, as shown by animal data in which inhibition of 
these ligands leads to muscle hypertrophy, decreased adiposity, 
increased bone formation, decreased bone resorption and altered bone 
geometry (particularly at entheses) [47,104]. Inhibitors of the activin 
receptor signaling include native antagonists (e.g., follistatin that binds 
and neutralizes activins, myostatin and GDF11), activin type IIA or type 
IIB decoy receptors, anti-receptor II (anti-ActRII) antibody, and single or 
dual inhibitors against one or two ligands (Fig. 3). A ligand trap strategy 
using recombinant soluble ActRIIA or ActRIIB increases bone volume 
and strength in mice (as well as muscle mass and strength using a 
ActRIIB decoy receptor), including disuse atrophy [1,105]. Some pre-
clinical studies suggest a beneficial effect of combining myostatin inhi-
bition with testosterone [106], exercise or perhaps other interventions. 

2.8. Mesenchymal stem cell differentiation 

Mesenchymal stem cells or progenitor cells can differentiate into the 
adipocyte, myocyte, or osteoblast/osteocyte lineage, under the control 
of biomechanical, metabolic, paracrine or endocrine signals. Aged 
mesenchymal stem cells display reduced osteogenic differentiation and 
profileration capacity, and increased adipogenic differentiation capac-
ity. Higher levels of circulating osteoprogenitor cells are associated with 
higher BMD and lean mass in older adults [107]. Conversely, in frail 
sarcopenic individuals, low circulating osteoprogenitor cells have been 
reported [41]. Intracellular and interstitial fatty infiltration is a hallmark 
of sarcopenia [108], and bone marrow adiposity is increasingly recog-
nized as a contributory factor in osteoporosis [20,109]. Lamin A/C (a 
progeroid gene) stimulates osteogenic and inhibits adipogenic differ-
entiation of mesenchymal stem cells via Wnt/β-catenin signaling in vitro 
[110]. In vivo, lamin A/C deficiency reduces bone and muscle volume 

Table 2 
Examples of muscle-secreted factors with known roles in bone metabolism 
(none-exhaustive list, adapted and reproduced from Florin et al. [64] with 
permission).  

Category Examples 

Cytokines and growth 
factors 

Bone morphogenetic protein 1, 4 
Brain derived neurotrophic factor 
Granulocyte colony-stimulating factor 
Insulin-like growth factor 1, 1A, 2 
Insulin-like growth factor binding proteins 2, 3, 4, 5, 6, 7 
Interleukin 1β, 2, 4, 6, 7, 8, 10, 13, 17A, 25, 34 
Macrophage colony-stimulating factor 1 
Osteoclast-stimulating factor 1 
Platelet-derived growth factor A, C 
Secreted frizzled-related protein 2, 4 
Stromal cell-derived factor 1 (C-X-C motif chemokine 12), 
2 
Transforming growth factor β (1,2,3) 
Tumor necrosis factor α 
Vascular endothelial growth factor A, C, D 
… 

Extracellular matrix 
proteins 

Basement membrane-specific heparan sulfate 
proteoglycan core protein (Perlecan) 
Biglycan 
Collagen I(α1, α2), II(α1), etc. 
Decorin 
Fibrillin 1, 2 
Fibulin 1, 2, 5, 7 
Matrix Gla Protein 
Mimecan (osteoglycin) 
Periostin 
Proteoglycan 4 
Sushi, von Willebrand factor type A, EGF and pentraxin 
domain-containing protein 1 (SVEP1) 
… 

Enzymes Matrix metalloproteinase 2, 9, 14, 19 
Superoxide dismutase 
Tissue-type plasminogen activator 
… 

Miscellaneous Semaphorin 3(A,B, C, D, E), 4(B, C), 5A, 6(A, B), 7A 
Ephrin type-A receptor 1, 2, 4, 7 
Exostosin 1, 2 
WNT1-inducible-signaling pathway protein 1 
…  
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and strength, with concomitant fat infiltration [111]. Peroxisome 
proliferator-activated receptor-γ is an important transcription factor 
regulating the balance between adipogenesis and osteogenesis [109]. 
However, targeted deletion of peroxisome proliferator-activated recep-
tor-γ in osteoprogenitor cells reduced bone marrow adipocytes, but 
increased cortical porosity [112]. The latter findings provide a 
compelling argument against the hypothesis that imbalanced progenitor 
cell differentiation is a culprit in osteoporosis. 

Alternatively, adipocytes are known to release detrimental media-
tors such as RANKL or palmitate, which exert lipotoxic effects on oste-
oblasts [113] or stimulate osteoclasts [112], respectively. However, 
further studies are needed to validate these paradigms [21]. 

2.9. Cellular senescence 

Central aging mechanisms include genomic instability, telomere 
attrition, epigenetic alterations, loss of proteostasis, deregulated 
nutrient sensing, mitochondrial dysfunction (including, but not limited 
to, the free radical theory and reactive oxygen species), cellular senes-
cence and stem cell exhaustion. All of these mechanisms might 
contribute to osteosarcopenia, by simultaneously depleting musculo-
skeletal reserves with aging. Kirk et al. [114] reported that slow walking 
pace was associated with leukocyte telomere length in the U.K. Biobank 
while osteosarcopenia was not, although it was still very rare (0.5–1 %) 
in this cohort (mean age, 67.8 years). 

Cellular senescence in particular has drawn much attention, because 

it may be targeted using senolytic drugs (which clear senescent cells 
with intermittent administration, thus potentially minimizing side ef-
fects). Mice with muscle-specific (but not osteoblast-specific) deletion of 
lamin A/C display not only muscle cellular senescence but also trabec-
ular bone loss, increased bone resorption, with increased interleukin 6 
release and support for osteoclastogenesis using conditioned media from 
myotubes [115]. Given that clearance of senescent cells prevents not 
only osteoporosis [116] but also muscle atrophy [117] and improves 
cardiovascular function, insulin sensitivity and frailty, phase 1 trials of 
senolytic drugs are currently ongoing. 

3. Treatments for osteosarcopenia 

While there has been extensive research on the pharmacological and 
non-pharmacological treatment of osteoporosis and sarcopenia as 
separate conditions, few studies have examined the concurrent effect of 
therapy on bone and muscle in individuals with osteosarcopenia. 
Notably, current guidelines on sarcopenia prevention, diagnosis and 
management do not mention osteosarcopenia, let alone that any 
guidelines exist for osteosarcopenia itself [118]. 

3.1. Physical exercise 

Recent guidelines on the prevention and treatment of osteoporosis 
recommend combined physical exercise programs to prevent falls and 
fractures. Resistance training (e.g. weightlifting) and impact exercises (e. 

Fig. 3. Schematic overview of myostatin and activin A signaling via activin receptors. Upon secretion by muscle cells, pre-promyostatin is cleaved, the active C- 
terminal fragment dimerizes and is stored as an inactive complex with the N-terminal fragment. Follistatin, follistatin-like 3 (FSTL-3), GDF-associated serum protein 1 
(GASP-1), GASP-2 and other binding proteins inhibit myostatin, activin A as well as other bone morphogenetic protein (BMP)/transforming growth factor β (TGF-β) 
ligands. Activin receptors type II B and A (ActRIIB, ActRIIA) preferentially bind myostatin and activin A respectively, with lower affinity for the other ligand or other 
TGF-β/BMP ligands. Ligand binding triggers recruitment and phosphorylation of a type I activin co-receptor, mostly the serine-threonine kinase ALK4 (activin 
receptor-like kinase 4, encoded by ACVR1B). This complex stimulates phosphorylation of Smad2 and 3, resulting in Smad 2/3/4 complex formation and nuclear 
translocation to Smad binding elements. Additionally, Akt phosphorylation and activity are inhibited which decreases the inhibition of FoxO and other transcription 
factors. Pharmacologically, this pathway can be inhibited by monoclonal anti-myostatin antibodies or ActRIIA/B-IgG-Fc fusion proteins (ligand trap strategy). 
Adapted and reproduced from Laurent et al. [1], with permission. 
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g. jumping) are mostly recommended, in addition to balance training to 
prevent falls (e.g. Tai Chi) [119]. High-intensity training and supervised 
exercise programs appear to be more effective to reduce fracture risk 
[120]. 

There is high-quality evidence that resistance training improves 
muscle mass, strength and physical performance, but few studies have 
evaluated sarcopenia as a construct [121]. Since high-intensity resis-
tance and impact training has been shown to improve BMD and physical 
function in postmenopausal women [122], it could be an effective 
therapeutic option for osteosarcopenia, falls and fracture prevention. 
Similarly, the “Osteo-cise” program has demonstrated significant bene-
fits on BMD, muscle strength and physical performance [123]. 

Few studies have been performed in subjects diagnosed with osteo-
sarcopenia [124]. The two available randomized controlled trials (RCTs) 
(N = 106 older adults in total) [125,126] showed that resistance training 
increases muscle strength and mass, with low-quality evidence for 
increased lumbar spine BMD [127], maintenance of total hip BMD 
[128], and no effect on physical performance [124]. One study (N = 63 
postmenopausal women) investigated exercise in osteosarcopenic 
obesity [125]. The other trial (N = 43 men) compared the combination 
of exercise and whey protein supplementation against a control group 
[128]. Clearly, further studies are needed. 

Overall, the optimal exercise program for osteosarcopenia would 
most likely involve a supervised multicomponent exercise program 
including weight-bearing exercises, progressive resistance and balance 
training [123]. There has also been considerable interest in whole-body 
vibration therapy [1], but the evidence supporting this strategy remains 
limited [129]. 

3.2. Nutritional interventions 

Protein supplementation has been the most investigated nutritional 
intervention for musculoskeletal health, although individualized nutri-
tional support should be recommended, looking broader at caloric 
intake, micronutrients, comorbidities etc.. 

Protein supplementation and exercise combined are among the most 
likely effective interventions for muscle strength in network meta- 
analysis [130]. In a meta-analysis in frail older adults, protein supple-
mentation plus exercise has been associated with a reduction in falls, 
improved strength, lean mass, functional performance and frailty clas-
sification [131]. Protein supplementation alone however does not 
appear to benefit frail older adults [132]. The evidence for an added 
effect of nutritional supplementation on high-intensity resistance 
training on muscle function (regardless of timing) appears limited 
[121]. Protein supplementation dose-dependently provides small addi-
tional gains in muscle mass and lower body strength (but not handgrip 
strength) during resistance training (but not without training), although 
the effect on functional performance is only marginal [133]. 

Currently, evidence on nutritional interventions with sarcopenia as 
an outcome [134], or specifically in osteosarcopenia patients, appears 
lacking [124]. Overall, there is no evidence for protein supplementation 
to prevent osteoporosis [135]. On the other hand, a cluster-randomized 
trial has shown that dairy product supplementation, which increases 
calcium and protein intake, reduces the risk of falls and fractures while 
slowing bone turnover and bone loss in nursing home residents [136]. 
As with vitamins or hormones, nutritional interventions are likely to 
benefit only deficient high-risk populations. 

3.3. Vitamin D supplementation 

There are, to our knowledge, no studies that have investigated the 
effect of vitamin D supplementation in persons with osteosarcopenia. 
However, studies in vitamin D-deficient older adults at high fracture risk 
(e.g. nursing home residents) suggest that calcium and vitamin D sup-
plementation at moderate daily doses reduces fracture risk by about 15 
% [137]. 

Prolonged and profound vitamin D deficiency causes rickets and 
osteomalacia, which are associated with muscle weakness. In RCTs 
however, the effects of vitamin D on muscle mass, strength, physical 
performance and balance are not so clear. A recent meta-analysis with 
83 % vitamin D-replete individuals, found no effect on performance, 
muscle strength or mass, except for a small effect on the latter outcome 
in participants with baseline 25-hydroxyvitamin D concentrations <35 
nmol/L [138]. Overall, in community-dwelling older adults, there seems 
to be no effect of vitamin D supplementation on indices of sarcopenia, 
with possible worsening of physical performance in some trials 
[138,139]. However, the effects may differ depending on the dose used, 
the degree of obesity [140,141] or the degree of balance problems at 
baseline [142]. Moreover, improvement in physical quality of life has 
been reported in subjects with 25-hydroxyvitamin D levels <25 nmol/L 
[140]. 

Further randomized trials in clearly vitamin D-deficient populations 
with osteosarcopenia might be considered, but raise ethical challenges. 

3.4. Growth hormone (GH) and GH secretagogues 

GH produces a small increase in lean body mass in men but not 
women, however without improving BMD [143]. Moreover, side effects 
include arthralgia, edema, carpal tunnel syndrome, gynecomastia, and 
diabetes mellitus. 

Ghrelin is a polypetide expressed in the stomach and hypothalamus 
that stimulates GH secretion, food intake and body weight gain. A phase 
2 study in healthy older adults studied the effect of capromorelin, a 
ghrelin receptor agonist. The study was stopped prematurely due to 
increased body weight and fasting glucose, although lean mass and 
functional performance also increased (BMD was not reported). A phase 
2 RCT using the ghrelin receptor agonist anamorelin in osteosarcopenic 
subjects is currently ongoing (ClinicalTrials.gov: NCT04021706). 

3.5. Testosterone and selective androgen receptor modulators 

Declining total and bioavailable testosterone levels are associated 
with bone and muscle loss and increasing adiposity in older men as well 
as men treated with androgen deprivation therapy for prostate cancer 
[5]. Testosterone therapy increases fat-free mass, increases muscle 
strength, lowers bone turnover markers and increases BMD. There are 
no studies in osteosarcopenic subjects, but in one trial in older adults 
with testosterone <350 ng/dL and at least one Fried frailty criterion, 
transdermal testosterone decreased fat mass and increased ALM and 
BMD, but not muscle strength or performance [144]. In two recent RCTs, 
testosterone improved BMD [145,146], self-reported walking ability 
and six-minute walking distance (modestly), particularly in those with 
pre-existing mobility limitations [147]. An RCT in frail older adults 
showed improved physical performance [148]. However, there is no 
evidence that testosterone therapy reduces falls [147] or fracture risk, 
and safety concerns include cardiovascular adverse effects, stimulation 
of pre-existing prostate cancer, polycythemia and venous thromboem-
bolic risk [148]. 

Selective androgen receptor modulators (SARMs) have been pro-
posed to elicit favorable musculoskeletal effects while avoiding some of 
these adverse effects [1]. However, part of their purported specificity 
may simply be due to lack of conversion by aromatase or 5α-reductases, 
and not due to tissue-specific actions on the androgen receptor [149]. 
Despite improvements in lean body mass, improvements in BMD have 
not been demonstrated in RCTs. More studies investigating the effect of 
testosterone in combination with exercise programs in osteosarcopenic 
subjects are required. Indeed, a recent RCT in chronic obstructive pul-
monary disease showed that a SARM increased leg strength and lean 
body mass in combination with a home exercise program [150]. 
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3.6. Inhibitors of the activin receptor signaling pathway (IASPs) 

The activin receptor signaling pathway offers an interesting thera-
peutic avenue for osteosarcopenia. In phase 1 RCTs, a decoy ActRIIB 
increased lean mass, thigh muscle volume, bone formation and lowered 
bone resorption [151]. Soluble ActRIIA also increased bone formation, 
reduced bone resorption and improved BMD [152]. Because of their 
stimulatory effects on erythropoiesis, ActRIIA inhibitors have been 
further developed and are currently marketed for anemia. 

A phase 2 RCT in older fallers with low muscle power showed that 
myostatin inhibition using landogrozumab increased ALM, reduced fat 
mass and improved some functional performance measures [153]. 
However, bone turnover was unaffected and whole-body BMD was 
paradoxically reduced, which the authors interpreted as an artifact from 
altered fat-to-lean mass ratio on DXA measurements [153]. 

A recently published phase 2 RCT in older sarcopenic adults evalu-
ated bimagrumab, which binds both ActRIIA and ActRIIB and inhibits 
activation both receptors. Compared to standard of care (home-based 
exercises, vitamin D and protein supplementation), lean mass increased, 
but muscle strength and physical performance did not [154]. In obese 
diabetic adults, bimagrumab increased lean mass while reducing fat 
mass, body weight and HbA1c [155]. Also in hip fracture patients, 
bimagrumab increased lean body mass but did not enhance recovery 
[156]. BMD results were not reported in any of these trials. Further 
clinical studies are needed to delineate the therapeutic potential of 
IASPs for osteosarcopenia. 

3.7. Effects of osteoporosis drugs on muscle and falls 

There is increasing attention to the extraskeletal effects of osteopo-
rosis drugs, including for sarcopenia (and thus, osteosarcopenia). 
Denosumab (a RANKL inhibitor) has been associated with a reduced risk 
of falls [157]. Compared to bisphosphonates or placebo, a smaller meta- 
analysis found that denosumab increased handgrip strength but not gait 
speed [80]. Denosumab has also been associated with higher ALM [80], 
improve multidirectional agility [158] and improved glucose meta-
bolism [159]. 

In one multicenter prospective study, only denosumab reduced the 
risk of falling, but denosumab, alendronate or zoledronate improved 
handgrip strength, gait speed and the timed up-and-go test [160]. Other 
studies have found mixed results [161,162]. Effects of bisphosphonates 
on ALM might also be related to overall prevention of weight loss (an 
anti-cachexia effect) [163,164,165]. In the mdx mouse model, pamidr-
onate also improved muscle function [166]. 

Further preclinical and clinical studies in osteosarcopenia are 
required to confirm these findings and whether these are direct or in-
direct effects via muscle or muscle-bone crosstalk. Meanwhile, osteo-
porosis drugs with demonstrated efficacy should be considered to 
prevent fractures also in osteosarcopenic subjects. Pragmatically, 
screening for sarcopenia might be considered in osteoporotic patients, 
and vice versa [29]. 
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